
“SoK: Eternal War in Memory”

Presented by Mengjia Yan
MIT 6.888 Fall 2020

Overview

• Discuss the paper “SoK: Eternal War in Memory” with concrete
examples

• Recent progress on memory safety
• With a focus on hardware/architecture

2

Motivation

• C/C++ is unsafe
• Everybody runs C/C++ code
• They surely have exploitable vulnerabilities

3

Low-level Language Basics (C/C++/Assembly)

• Programmers have more control
+ Efficient
- Bugs
- Programming productivity

• Pointers
• Address of variables (uint64): index of memory

location where variable is stored
• Programmers need to do pointer check, e.g.

NULL, out-of-bound, use-after-free

4

0x00..0000

0xFF..FFFF

OS memory

TEXT (code)
Global/Static

DATA

Stack

Heap

Low-level Language Basics

5

0x00..0000

0xFF..FFFF
Stack

Heap

TEXT (code)

Low-level Language Basics

6

stack

TEXT (code)

Attacks

Code Injection Attack Example

int func (char *str) {
char buffer[12];
strncpy(buffer, str, len(str));
return 1;

}

int main() {
….
func (input);
…

}

8

stack

TEXT (code)
Shell code:

PUSH “/bin/sh”
CALL system

Code Injection Attack

9

stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

Shell code

Return addr

…

10

Attacks

Return-Oriented Programming (ROP)

int func (char *str) {
char buffer[12];
strncpy(buffer, str, len(str));
return 1;

}

int main() {
….
func (input);
…

}

11

stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

….

Return addr

…

12

Attacks

HeartBleed Vulnerability

• Publicly disclosed in April 2014
• Bug in the OpenSSL cryptographic

software library heartbeat
extension
• Missing a bound check

13

14

Attacks

Recent Memory Safety Issues

15From Hardware-based Always-On Heap Memory Safety; Kim et al; MICRO’20

A root cause trend of memory safety vulnerabilities reported by Microsoft

Why Not High-level Language

Why not High-level Language?

• Benefits:
• Easier to program
• Simpler concurrency with GC
• Prevents classes of kernel bugs

• Downsides (performance):
• Safety tax: Bounds, cast, nil-

pointer checks
• Garbage collection: CPU and

memory overhead, pause time
• Feasibility?

17

The benefits and costs of writing a POSIX kernel in a high-level language; Cody Cutler, M. Frans Kaashoek, and
Robert T. Morris, MIT CSAIL (OSDI’18)

BISCUIT: new x86-64 Go kernel

No fundamental challenges due to HLL

But many implementation puzzles
• Interrupts
• Kernel threads are lightweight
• Runtime on bare-metal

...

Surprising puzzle: heap exhaustion

18

Why not Rust (no GC)?

Rust compiler analyzes the program to partially
automate freeing of memory.
This approach can make sharing data among
multiple threads or closures awkward

BISCUIT: Performance Evaluation

• Conclusion:
• The HLL worked well for kernel development
• Performance is paramount ⇒ use C (up to 15%)
• Minimize memory use ⇒ use C (↓ mem. budget, ↑ GC cost)
• Safety is paramount ⇒ use HLL (40 CVEs stopped)
• Performance merely important ⇒ use HLL (pay 15%, memory)

19

Test case: pipe ping-pong (systems calls,
context switching)

Defenses

How do they work?

• W⨁X (non-executable data)

• Stack canary (return integrity)

• ASLR

21

stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

Shell code

Return addr

…

Deployed Defenses

22

Policy Technique Weakness Perf. Comp.

Hi
ja

ck
 p

ro
te

ct
io

n W⊕X Page flags JIT 1x Good

Return integrity Stack cookies Direct overwrite 1x Good

Address space rand. ASLR Info-leak. 1.1x Good

23

Defenses

No need to
worry except
for JIT code

W⨁X

HW Support for Memory Safety

Memory Safety

• Spatial safety (bound information)
• Temporal safety (allocation/de-allocation information)

• Low-level reference monitor
• SW approach: add checks à performance overhead
• Execution time: Extra instructions to perform the check
• Memory: Maintain extra meta data (in shadow memory)

25

Intel MPX (Memory Protection Extension)

26

4 128-bit bound registers (bnd0-3)
• Bndmk: create base and bound metadata
• Bndldx/bndstx: load/store metadata from/to bound tables
• Bndcl/bndcu: check pointer with lower and upper bounds

Any problem?

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19

27

Intel MPX

Analysis of Intel MPX

Intel MPX is impractical for fine-grained memory safety
• High overheads
• Check is sequential
• loading/storing bounds registers involves two-level address translation

• Does not provide temporal safety
• Does not support multithreading transparently

28

Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18

ARM PA (Pointer Authentication)

• Keys: 128 bit, stored in system registers
• Modifier: either another processor register or 0
• PAC: a tweakable message authentication code (MAC)
• Where to store PAC?

29

Generate PAC Check PAC

30

ARM PA

Discussion Questions

Discussion Questions

• Given that backwards compatibility has been a large issue for many
proposed mitigation techniques, is it at all feasible to transition to new
binaries all in unison (during a transition, say, to a new architecture/OS)?

• Does the increased space of potential memory safety vulnerabilities in a JIT
compilation environment translate to noticeably less secure programs in
practice?

• Can code verification be used to completely ensure that a piece of code is
void of memory attacks? Or do some memory attacks exist where even
static verification cannot detect or avoid?

32

Discussion Questions

• Practical solutions to memory safety (e.g. Rust) exist, but it is difficult to get
software developers to make the switch due to time/resource constraints.
Is it practical to focus on memory safety issues that aren't likely to be
critical exploits?

• How much of memory corruption is a hardware related problem? Is it
possible to produce corruption free programs using formal verification?

• Can these bounds checking systems actually do anything about temporal
errors?

• Are there memory corruption-based availability attacks?

33

Backup

34

CFI: Control Flow Integrity

35

CFI

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

CFI

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

ID

ID

CFI

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}

ID

ID

check ID

check ID

CFI

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ?

check ?

if (…)
q = &f

else
q = &g

Over-approximation Problem

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ID

check ID

if (…)
q = &f

else
q = &g

