“SoK: Eternal War in Memory”

Presented by Mengjia Yan
MIT 6.888 Fall 2020

I)

CSAIL

Overview

* Discuss the paper “SoK: Eternal War in Memory” with concrete
examples

* Recent progress on memory safety
* With a focus on hardware/architecture

Motivation

e C/C++ is unsafe
* Everybody runs C/C++ code
* They surely have exploitable vulnerabilities

Low-level Language Basics (C/C++/Assembly)

0x00..0000
* Programmers have more control

+ Efficient OS memory
- Bugs
- Programming productivity

* Pointers -
e Address of variables (uint64): index of memory

location where variable is stored Heap l

* Programmers need to do pointer check, e.g.
Stack I

NULL, out-of-bound, use-after-free

OXFF..FFFF

I Low-level Language Basics

0x00..0000

OXFF..FFFF

Heap l
Stack I

I Low-level Language Basics

int hello() | [oo |

int a = 100;

return a;
} stack
int main() {

int a;

int = -3;

int ¢ = 12345;

int *p = &b;

int d = hello();

return 0;

Attacks

Code Injection Attack Example

int func (char *str) {
char buffer[12];

N | o one) |

. PUSH “/bin/sh”
strncpy(buffer, str, len(str)); CALL system stack
return 1;
}
int main() {

func (input);

I Code Injection Attack

stack stack

@ © 6 o © 6

Attacks

Make a pointer go
out of bounds

Make a pointer
become dangling

)

)

Use pointer I
Vi

to read

J Memory Safety

[[3\
{ {))
Modify a Modify Modify a data Output data
data pointer code ... variable ... variable

VILA.

Code Integmyj L Code Pointer lntegrl% Data Integrity
¢ .

... to the attacker | ... to the address of VA ... to the attacker | Interpret the |
ified cod hellcod dget " ified val utput dat .B.
spec code e shellcode / gadge e specified value output data V.B
Randomization Randomization i
/N Randomization
Use polnter by Use pointer by Use corrupted
indirect call/jump return instruction data variable
VILB.
- k Control—ﬂow Integnry Data-flow Integ rity/
Execute available
gadgets / functions
xecutable Data /
Instructlon Set Randomization
Code corruption Data-only
attack attack 10

I Return-Oriented Programming (ROP)

int func (char *str) {
char buffer[12];
strncpy(buffer, str, len(str));
return 1;

}

int main() {

func (input);

stack

buffer

Return addr

| T o) |

stack

Return addr

11

@ © 6 o © 6

Attacks

Make a pointer go
out of bounds

Make a pointer
become dangling

)

)

Use pointer
to read

I VL.

J Memory Safety

[l/ 3\ 1
J S S
Modify a Modify Modify a data Output data
data pointer code ... variable ... variable
VILA.
Code Integmyj L Code Pointer lntegrl% Data Integrity
¢ .
... to the attacker | ... to the address of VA ... to the attacker | Interpret the |
ified cod hellcod dget " ified val utput dat .B.
spec code e shellcode / gadge e specified value output data V.B
Randomization Randomization i
/N Randomization
(o~ R
& 3 &
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
VLS. VILB.
- <S> Contro‘l-\ﬂow Integrity Data-flow Integ rity
sk
Execute available Execute injected
gadgets / functions shellcode
Non-executable Data /
Instruction Set Randomization
Code corruption Data-only
attack attack 12

HeartBleed Vulnerability

* Publicly disclosed in April 2014

* Bug in the OpenSSL cryptographic

software library heartbeat
extension

* Missing a bound check

Qp Heartbeat - Normal usage

Server, send me S
this 4 letter word erver
if you are there: .
. DL fe A bird
Client bird l
" —

W Heartbeat - Malicious usage

Server, send me) Server
this 500 letterJ bird. Server

word if youare | Masterkeyis

. there: "bird" 31431498531054.
Client & User Carol wants

to change
password to
"password 123"...

_

13

@ © 6 o © 6

Attacks

Make a pointer go
out of bounds

Make a pointer
become dangling

)

A

Use pointer
to write (or free)
L
[l/ 3\
J S - S
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... variable ... variable
VIILA. VILA
Code Integrity L Code Pointer Integrity Data Integrity
... to the attacker | ... to the address of I VA ... to the attacker |
ified cod hellcod dget " ified val utput dat
spec code e shellcode / gadge e specified value output data
Randomization | Randomization Randomization|
- A >
N 2 N
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
C J
k Control-flow Int::'n?y b
7~ < > > Data-flow Integrity
) _. &
Execute available Execute injected
gadgets / functions shellcode
S Non-executable Data /
Instruction Set Randomization
Code corruption Data-only
attack attack 14

I Recent Memory Safety Issues

I Stack Corruption I Heap OOB Read [] Type Confusion []Other
I Heap Corruption [Use After Free [Uninitialized Use

100%
90% - =5 - 59 i
44 159 139 197 -
80% -4 i 10361120 =2 159 13 T 221 |
70% - %E 8] %] B e -
60%-%-‘161_3?=:&E 25 36 B2 e |
50% - > 44 14— = = E a "
40% - EmEE 81—
30% - 2 N = 99 |
20% - - i
10% - i
0%
©O A @ O V0 ANA DX LD b A LD
R R IFIIIIIIIDIID
A AT AD AR AT AR AR AR AR AT AR AR AD

A root cause trend of memory safety vulnerabilities reported by Microsoft

From Hardware-based Always-On Heap Memory Safety; Kim et al; MICRO’20

Why Not High-level Language

I Why not High-level Language?

* Benefits: * Downsides (performance):
e Easier to program e Safety tax: Bounds, cast, nil-
e Simpler concurrency with GC pointer checks
e Prevents classes of kernel bugs * Garbage collection: CPU and
memory overhead, pause time
* Feasibility?

The benefits and costs of writing a POSIX kernel in a high-level language; Cody Cutler, M. Frans Kaashoek, and
Robert T. Morris, MIT CSAIL (OSDI’18)

17

BISCUIT: new x86-64 Go kernel

No fundamental challenges due to HLL

But many implementation puzzles Why not Rust (no GC)?

* Interrupts
. - R H .
* Kernel threads are lightweight a:jtsg;C;Tep;lr:;?n”gazzfnsetr:zrpyrogram to partially

 Runtime on bare-metal This approach can make sharing data among
multiple threads or closures awkward

Surprising puzzle: heap exhaustion

18

BISCUIT: Performance Evaluation

Test case: pipe ping-pong (systems calls,

BiscuiT ops/s Linux ops/s Ratio context switching)
CMailbench (mem) 15,862 17,034 1.07
NGINX 88,592 94,492 1.07 c Go _
Redis 711,792 775,317 1.09 (ops/s) (ops/s) Ratio

536,193 465,811 1.15

Prologue/safety-checks = 16% more instructions

* Conclusion:

* The HLL worked well for kernel development

* Performance is paramount = use C (up to 15%)

* Minimize memory use = use C (' mem. budget, I GC cost)
Safety is paramount = use HLL (40 CVEs stopped)
Performance merely important = use HLL (pay 15%, memory)

19

Defenses

I How do they work?

_ _ « WX (non-executable data)

stack stack

 Stack canary (return integrity)

buffer Shell code e ASLR

I Deployed Defenses

-“

5 Page flags Good
3]
&
g_ Return integrity = Stack cookies Direct overwrite 1x Good
I
T Address space rand. ASLR Info-leak. 1.1x Good

22

-

Defenses

1

Make a pointer go
out of bounds

Make a pointer
become dangling

N /x\ J
L 7)
Use pointer Use pointer
to write (or free) to read Vi
T |

) Memory Safety

X

L

Modify a
data pointer

No need to

worry except
for JIT code

©@ 0 6 e 6 06

== —-)

Modify a Modify a data
code pointer ... variable ...
VIILA. VILA
Code Integnty Code Pointer Integnty Data Integrity
... to the address of VA ... to the attacker
. shellcode / gadget o specified value
Instruction Set Address Space
Randomization Randomization
£ —— X
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
C J
i Control-flow Int‘e""r.is. M-
‘f < > ~ grity Data-flow Integrity
Execute available
gadgets / functions

Data-only
attack

)

Output data
variable

Interpret the
output data

V.B.

Data Space
Randomization

23

HW Support for Memory Safety

Memory Safety

* Spatial safety (bound information)
* Temporal safety (allocation/de-allocation information)

* Low-level reference monitor
* SW approach: add checks = performance overhead
e Execution time: Extra instructions to perform the check
* Memory: Maintain extra meta data (in shadow memory)

25

4 128-bit bound registers (bnd0-3)

Original Program

p=malloc(16);
. Ilp=p+4;
*p e Ial;

Instrumented Program

p=malloc(16);

bnd0 = bndmk(p,16);
bndstx (&p,p,bnd0);
. Ip=p+4;

bnd1 = bndldx(&p,p);
bndcl (&p, bnd1);
bndcu (&p, bnd1);

*p - lal;

Bndmk: create base and bound metadata
Bndldx/bndstx: load/store metadata from/to bound tables
Bndcl/bndcu: check pointer with lower and upper bounds

bndstx (Ptr Addr., PtrVal., [Base, Bound));
bndstx (&p, 0x1000, [0x1000, 0x1010));

.

BNDCFGx—p

v

Bound Table Entry (32B)

Base |Bound |PtrVal

Unused

0x10000x1010 0x1000

Unused

BDE (8B)|—p>

Bound Table (4MB)

Bound Directory (2GB)

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19

Intel MPX (Memory Protection Extension)

Any problem?

26

®© © 6 © 6 6

K
Intel MPX

Make a pointer
become dangling

)

L

M

N
Use pointer Use pointer
to write (or free) to read Vi
| g X 7 Memory Safety,
e [Y Y 1
N r L s L 2 N
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... variable ... variable
VIILA. VILA.
L Code Integrity| Code Pointer Integrity | Data Integrity
I N | N
... to the attacker ... to the address of ... to the attacker Interpret the
specified code e shellcode / gadget Address VA. specified value output data V.B.
L Randomlzatlon/ L Randomization J Randomi / tion
2~
(o~ R
N 072 3
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
\ 4 VIILB.
VILB.
. % Control-‘ﬂow Integrity Data-flow Integrity
L y A3
Execute available Execute injected
gadgets / functions shellcode
Non-executable Data /
Instruction Set Randomlzatfor!

27

Analysis of Intel MPX

Intel MPX is impractical for fine-grained memory safety

* High overheads
* Check is sequential
* loading/storing bounds registers involves two-level address translation

* Does not provide temporal safety
* Does not support multithreading transparently

Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18

28

I ARM PA (Pointer Authentication)

Pointer + PAC

[

Generate PAC Check PAC

* Keys: 128 bit, stored in system registers
* Modifier: either another processor register or 0

* PAC: a tweakable message authentication code (MAC)
* Where to store PAC?

63 56| 55 | 54 VA SIZE | VA_SIZE -1

[VA range select

29

@ © 6 o © 6

N\

.

Make a pointer go Make a pointer
A R M A out of bounds become dangling
I 1§ k)
L 0 7)
Use pointer Use pointer
to write (or free) to read Vi
\ i J Memory Safety
[~ 3\
- i (" | L) 1
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... variable ... variable
VIILA.
Code Integri e Pointer Integril ViLA.
L grity) 1 grity Data Integrity
... to the attacker | ... to the address of I VA ... to the attacker I Interpret the I
ified cod hellcod dget " ified val utput dat |
spec code e shellcode / gadge R spec value output data V.B.
Randomization Randomization Sl
/| Randomization
- A >
(o~ R \
N 2
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
C T
* Control-flow Intv lll’.iB. VILB.
> — N egrity Data-flow Integrity
L . "
Execute available Execute injected
gadgets / functions shellcode
\ N) Non-executable Data /
Instruction Set Randomization’
Code corruption Control-flow Data-only
attack hijack attack attack 30

Discussion Questions

Discussion Questions

* Given that backwards compatibility has been a large issue for many
proposed mitigation techniques, is it at all feasible to transition to new
binaries all in unison (during a transition, say, to a new architecture/0S)?

* Does the increased space of potential memory safety vulnerabilities in a JIT
compilation environment translate to noticeably less secure programs in
practice?

e Can code verification be used to completely ensure that a piece of code is
void of memory attacks? Or do some memory attacks exist where even
static verification cannot detect or avoid?

32

Discussion Questions

* Practical solutions to memory safety (e.g. Rust) exist, but it is difficult to get
software developers to make the switch due to time/resource constraints.
Is it practical to focus on memory safety issues that aren't likely to be
critical exploits?

* How much of memory corruption is a hardware related problem? Is it
possible to produce corruption free programs using formal verification?

e Can th?ese bounds checking systems actually do anything about temporal
errors:

* Are there memory corruption-based availability attacks?

33

Backup

CFl: Control Flow Integrity

®

©@ © 6 v 06

-

1
Make a pointer go Make a pointer
out of bounds become dangling
L J

X

‘(N~

L

Use pointer
to write (or free)

Use pointer
to read

VL.
j¥ 1 J Memory Safety
s [~ N\ 1
J L N [4 N L
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... variable ... variable
VIILA. VILA
Code Integrity| | Code Pointer Integrity Data Integrity
> ;
... to the attacker ... to the address of VA ... to the attacker Interpret the
specified code shellcode / gadget - specified value output data .B.
pac Instruction Set / gadg Address Space pec P Data S, N :e
Randomization [Randomization Pa
/ [\ / Randomization
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
\ 4 VIILE VILB
X Control-flow Integri Data-flow Integrity
Sie
Execute available Execute injected
gadgets / functions shellcode
) Non-executable Data /
Instruction Set Randomization

attack

()
attack

35

check| ?

check| ?

I Over-approximation Problem

ID

checkID:F?m; if_,,,———”””””» f(i {

}
it (..)
q = &f
else ID
q = &g g() {
heck .
check| 1D Smp g 5

