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Overview

• Discuss the paper “SoK: Eternal War in Memory” with concrete 
examples

• Recent progress on memory safety
• With a focus on hardware/architecture
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Motivation

• C/C++ is unsafe
• Everybody runs C/C++ code
• They surely have exploitable vulnerabilities
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Low-level Language Basics (C/C++/Assembly)

• Programmers have more control
+ Efficient
- Bugs
- Programming productivity

• Pointers
• Address of variables (uint64): index of memory 

location where variable is stored
• Programmers need to do pointer check, e.g. 

NULL, out-of-bound, use-after-free
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0x00..0000

0xFF..FFFF

OS memory

TEXT (code)
Global/Static 

DATA

Stack

Heap



Low-level Language Basics
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0x00..0000

0xFF..FFFF
Stack

Heap

TEXT (code)



Low-level Language Basics
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stack

TEXT (code)



Attacks



Code Injection Attack Example

int func (char *str) { 
char buffer[12]; 
strncpy(buffer, str, len(str));
return 1; 

} 

int main() { 
…. 
func (input); 
…

}
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stack

TEXT (code)
Shell code:

PUSH “/bin/sh”
CALL system



Code Injection Attack

9

stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

Shell code

Return addr

…
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Attacks



Return-Oriented Programming (ROP)

int func (char *str) { 
char buffer[12]; 
strncpy(buffer, str, len(str));
return 1; 

} 

int main() { 
…. 
func (input); 
…

}
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stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

….

Return addr

…
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Attacks



HeartBleed Vulnerability

• Publicly disclosed in April 2014
• Bug in the OpenSSL cryptographic 

software library heartbeat 
extension
• Missing a bound check
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Attacks



Recent Memory Safety Issues

15From Hardware-based Always-On Heap Memory Safety; Kim et al; MICRO’20

A root cause trend of memory safety vulnerabilities reported by Microsoft



Why Not High-level Language



Why not High-level Language?

• Benefits:
• Easier to program
• Simpler concurrency with GC
• Prevents classes of kernel bugs

• Downsides (performance):
• Safety tax: Bounds, cast, nil-

pointer checks 
• Garbage collection: CPU and 

memory overhead, pause time
• Feasibility?
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The benefits and costs of writing a POSIX kernel in a high-level language; Cody Cutler, M. Frans Kaashoek, and 
Robert T. Morris, MIT CSAIL (OSDI’18)



BISCUIT: new x86-64 Go kernel

No fundamental challenges due to HLL 

But many implementation puzzles
• Interrupts 
• Kernel threads are lightweight
• Runtime on bare-metal

... 

Surprising puzzle: heap exhaustion 
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Why not Rust (no GC)?

Rust compiler analyzes the program to partially 
automate freeing of memory.
This approach can make sharing data among 
multiple threads or closures awkward



BISCUIT: Performance Evaluation

• Conclusion:
• The HLL worked well for kernel development
• Performance is paramount ⇒ use C (up to 15%)
• Minimize memory use ⇒ use C (↓ mem. budget, ↑ GC cost) 
• Safety is paramount ⇒ use HLL (40 CVEs stopped) 
• Performance merely important ⇒ use HLL (pay 15%, memory) 
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Test case: pipe ping-pong (systems calls, 
context switching)



Defenses



How do they work?

• W⨁X (non-executable data)

• Stack canary (return integrity)

• ASLR
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stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

Shell code

Return addr

…



Deployed Defenses
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Policy Technique Weakness Perf. Comp.

Hi
ja

ck
 p

ro
te

ct
io

n W⊕X Page flags JIT 1x Good

Return integrity Stack cookies Direct overwrite 1x Good

Address space rand. ASLR Info-leak. 1.1x Good
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Defenses

No need to 
worry except 
for JIT code

W⨁X



HW Support for Memory Safety



Memory Safety

• Spatial safety (bound information)
• Temporal safety (allocation/de-allocation information)

• Low-level reference monitor
• SW approach: add checks  à performance overhead
• Execution time: Extra instructions to perform the check
• Memory: Maintain extra meta data (in shadow memory)
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Intel MPX (Memory Protection Extension)
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4 128-bit bound registers (bnd0-3)
• Bndmk: create base and bound metadata
• Bndldx/bndstx: load/store metadata from/to bound tables
• Bndcl/bndcu: check pointer with lower and upper bounds

Any problem?

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19
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Intel MPX



Analysis of Intel MPX

Intel MPX is impractical for fine-grained memory safety
• High overheads
• Check is sequential
• loading/storing bounds registers involves two-level address translation

• Does not provide temporal safety
• Does not support multithreading transparently
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Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18



ARM PA (Pointer Authentication)

• Keys: 128 bit, stored in system registers
• Modifier: either another processor register or 0
• PAC: a tweakable message authentication code (MAC)
• Where to store PAC? 
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Generate PAC Check PAC
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ARM PA



Discussion Questions



Discussion Questions

• Given that backwards compatibility has been a large issue for many 
proposed mitigation techniques, is it at all feasible to transition to new 
binaries all in unison (during a transition, say, to a new architecture/OS)?

• Does the increased space of potential memory safety vulnerabilities in a JIT 
compilation environment translate to noticeably less secure programs in 
practice?

• Can code verification be used to completely ensure that a piece of code is 
void of memory attacks? Or do some memory attacks exist where even 
static verification cannot detect or avoid?
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Discussion Questions

• Practical solutions to memory safety (e.g. Rust) exist, but it is difficult to get 
software developers to make the switch due to time/resource constraints. 
Is it practical to focus on memory safety issues that aren't likely to be 
critical exploits?

• How much of memory corruption is a hardware related problem? Is it 
possible to produce corruption free programs using formal verification?

• Can these bounds checking systems actually do anything about temporal 
errors?

• Are there memory corruption-based availability attacks?
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Backup
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CFI: Control Flow Integrity
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CFI

p = &f
jmp p

q = &g
jmp q

f() {
…

}

g() {
…

}
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CFI

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ?

check ?

if (…)
q = &f

else
q = &g



Over-approximation Problem

p = &f
jmp p

jmp q

f() {
…

}

g() {
…

}

ID

ID

check ID

check ID

if (…)
q = &f

else
q = &g


